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Les desigualtats de Plünnecke–Ruzsa proporcionen fites superiors del creixement

de les sumes iterades d’un conjunt en un grup abelià. Aquesta mena de resultats

han estat estesos recentment per Petridis i per Tao al cas no abelià. El resultat
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sets are also obtained.
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Set growth in groups

1. Introduction

The theory of set addition was initiated by Freiman [2] in the 1960’s in the context of abelian groups.
More recently, a lot of e↵ort has been directed at extending this theory to the non-abelian case, as well
as searching for connections between this and many other areas of mathematics, such as Lie group theory,
number theory, or probability theory; see [1, 3]. In this context, the group operation is usually referred to
as set multiplication, instead of set addition. The product of two sets is defined as

AB = {ab | a 2 A, b 2 B}.

One can also define iterated product sets recursively, and define the inverse of a set as the set of the
inverses. Note that the inverse of a set has the same size as the set itself.

One of the most basic and important problems in this setting is bounding the growth of iterated product
sets. Some trivial tight bounds can be found, but a more interesting problem arises when bounding iterated
product sets, given a bound for the base product set |AA|  ↵|A|. In this sense, the first important result
is Plünnecke’s inequality, which was first proved in Plünnecke [5] in the late 1960’s, and has become one of
the most commonly used tools in additive combinatorics. His proof is based on a graph-theoretic method,
using what he called commutative graphs in order to obtain the following result.

Theorem 1.1 (Plünnecke’s inequality). Let j, h be two non-negative integers such that j < h, and let A

and B be finite sets in a commutative group. Assume that |A| = m and |AB j | = ↵m. Then, there exists

a non-empty set X ✓ A such that |XBh|  ↵
h
j |X |.

The proof is simple in its technical parts, but long and arduous. Variations of this proof have been used
to prove some more general results.

Ruzsa [6] rediscovered Plünnecke’s work by providing a proof based on Menger’s theorem on graph
theory, and used some of his own techniques to obtain some more general results. One of the most
important states as follows.

Theorem 1.2 (Plünnecke–Ruzsa inequality). Let A and B be finite sets in a commutative group, and j

be a positive integer. Assume that |BAj |  ↵|B |. Then, for any nonnegative integers k and l such that

j  min{k , l}, we have that |Al
A
�k |  ↵

k+l
j |B |.

The main limitation of these results is that they only hold in abelian groups (in fact, it is usual to
write them using additive notation). Furthermore, one can find counterexamples for an extension to the
non-commutative case. The only exception to this rule is when considering triple product sets; in this
case, Plünnecke’s graph-theoretic method can be used to obtain some results (see, for instance, Section 2).
For this reason, finding statements that resemble those of Plünnecke and Ruzsa and hold in the non-
commutative setting recently became an interesting problem.

Under these circumstances, Tao was the first to realise, in the late 2000’s, that one has to impose a
further restriction on the sets under consideration. In some sense, it is enough to see that the growth of
triple products of a set is bounded, |AAA|  ↵|A|, in order to bound all its iterated product sets. He also
proved that one can weaken this condition to |AaA|  ↵|A| for every a 2 A, and a bound for any product
sets of A can be given. His more general theorem in this setting can be stated as follows.

http://reportsascm.iec.cat18

http://reportsascm.iec.cat


Alberto Espuny D́ıaz

Theorem 1.3 (Tao, [10]). Let A be a finite set in a group. Assume that |AaA|  ↵|A| for every a 2 A, and

that |AA|  ↵|A|. Then, there exists some absolute constant c such that, for any signs ✏1, ... , ✏h 2{� 1, 1},
|A✏1A✏2 · · ·A✏h |  ↵ch|A|.

Setting all the signs to be equal in Theorem 1.3, one obtains the following corollary.

Corollary 1.4. Let A be a finite set in a group such that |AaA|  ↵|A| for every a 2 A, and |AA|  ↵|A|.
Then, there is an absolute constant c such that |Ah|  ↵ch|A|.

In 2011, Petridis presented a new method to prove estimates of the growth of product sets; see [4].
With his new technique, he was able to give an elementary proof of Plünnecke’s inequality and several
other results. He also used his method to give a specific value to the absolute constant in Corollary 1.4.

Theorem 1.5 (Petridis). Let A be a finite set in a group. Suppose that |AA|  ↵|A| and |AaA|  �|A|
for every a 2 A. Then, for all h > 2, |Ah|  ↵8h�17�h�2|A|.

In the statement of Tao’s theorem we had ↵ = � so, Petridis’s result gives a constant c = 9 as an
upper bound for c . The same approach using Petridis’s new method serves to obtain bounds in similar
settings, when considering more than one set.

In this paper, we work with the growth of sets under multiplication in the non-commutative setting,
and with results similar to Theorem 1.3 and Theorem 1.5. In particular, one of the results is a weaker
version of Theorem 1.5 that can be obtained without reference to Petridis’s new method, and hence could
have been developed before.

Theorem 1.6. Let A be a finite set in a group such that |AA|  ↵|A| and |AaA|  �|A|, for every a 2 A.

Then, for any h > 2, |Ah|  ↵9h�19�h�2|A|.

Additionally, we use Theorem 1.5 in order to obtain estimates for the size of iterated products of two
di↵erent sets. We also exploit it in order to give a specific value for the constant c in Theorem 1.3.

Theorem 1.7. Let A be a non-empty finite set in a group such that |AA|  ↵|A| and |AaA|  �|A|, for
every a 2 A. Then, for any signs ✏1, ... , ✏h 2{� 1, 1}, |A✏1A✏2 · · ·A✏h |  ↵8h�15 �h�2|A|.

The remainder of this paper is divided in the following way. In Section 2 we present the three results
that are needed in order to obtain our new results. In Section 3 we use these results to present the proof
of Theorem 1.6, and use it to give a specific value to the constant in Corollary 1.4. Finally, in Section 4
we use Theorem 1.5 and the tools from Section 2 to prove Theorem 1.7. Furthermore, we prove several
results when considering the product of two di↵erent sets.

2. Tools

In this section we present the tools needed for the proofs of the results of Sections 3 and 4. Two of
them are elementary, and their proofs are presented here for the sake of completeness. The third one is
a non-commutative theorem by Ruzsa, which cannot be proved without a thorough presentation of the
graph-theoretic method designed by Plünnecke. An account of its proof can be found, for example, in [9].

The first versions of the tools we present here were developed specifically for the abelian case. However,
they could easily be extended to the non-commutative setting. The first of these tools is known as Ruzsa’s
triangle inequality.
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Theorem 2.1 (Ruzsa’s triangle inequality, [7]). Let X , Y and Z be finite non-empty sets in a (not

necessarily commutative) group. Then, |X ||YZ�1|  |YX�1||XZ�1|.

Proof. The idea of the proof is to find an injection of X ⇥ (YZ�1) into (YX�1)⇥ (XZ�1). Since the sizes
of these sets are |X ||YZ�1| and |YX�1||XZ�1|, respectively, this yields the result.

Consider the following map:

' : X ⇥ (YZ�1) �! (YX�1)⇥ (XZ�1)

(x , yz�1) 7�! (yx�1, xz�1).

We would like to see that this is an injection. First, observe that an element yz
�1 2 YZ

�1 may come
from di↵erent elements y , y 0 2 Y and z , z 0 2 Z such that yz

�1 = y
0
z
0�1. Hence, we must first fix a

representation in Y , Z for each element of YZ�1. We do so by defining an injection f : YZ�1 �! Y ⇥ Z

such that f (a)Y f (a)
�1
Z = a for every a 2 YZ

�1, where f (a)Y denotes the first coordinate of f (a), and
f (a)Z denotes the second. Such an injection exists because of the definition of the set YZ�1. For example,
if we give the elements of Y some order y1 < y2 < · · · < yk , we could map a to the pair (yi , zj) such that
yiz

�1
j = a and the index i is minimum.

Now, assume that '(x , a) = '(x 0, a0). Then, f (a)Y x�1 = f (a0)Y x 0
�1 and xf (a)�1

Z = x
0
f (a0)�1

Z and,
multiplying these two equalities, we get that f (a)Y f (a)

�1
Z = f (a0)Y f (a0)

�1
Z . By definition of f , this means

that a = a
0. Substituting this in the former equations yields x = x

0 so, ' is an injection.

The second tool is the simplest of a group of results known as covering lemmas.

Lemma 2.2 (Ruzsa’s covering lemma, [8]). Let A and B be finite sets in a group G. Assume that

|AB |  ↵|A|. Then, there exists a non-empty set S ✓ B such that |S |  b↵c and B ✓ A
�1

AS.

Proof. The proof follows from choosing S ✓ B in the right way. Select S to be maximal subject to As1

being disjoint with As2 for every pair s1, s2 2 S . This is equivalent to choosing S to be maximal subject
to |AS | = |A||S | being true.

Now, take b 2 B . We distinguish two possible cases: if b 2 S then, for any a 2 A, we have that
b = a

�1
ab 2 A

�1
AS . Otherwise, b /2 S , and b cannot be added to S without breaking the maximality

condition so, there must be an element s 2 S such that Ab \ As 6= ?; equivalently, there exist some
elements s 2 S , a, a0 2 A such that ab = a

0
s hence, b = a

�1
a
0
s 2 A

�1
AS .

Finally, Ruzsa’s non-commutative bound for the product set of three sets in a non-commutative setting
can be stated as follows.

Theorem 2.3 (Ruzsa,[9]). Let A, B and C be finite sets in a group G. Assume that |AB |  ↵1|A| and
|CA|  ↵2|A|. Then, there exists a set ? 6= X ✓ A such that |CXB |  ↵1↵2|X |.

3. An explicit value for Tao’s theorem

A combination of the three tools presented in the previous section can be used to give a value to the
constant c in Tao’s Corollary 1.4. We start by using Ruzsa’s triangle inequality to prove a lemma that
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appeared in Petridis [4]. Let us mention that this lemma is not related to Theorem 1.5 of said paper, which
is its main contribution.

Lemma 3.1 (Petridis). Let A and B be finite non-empty sets in a group. Suppose that |AA|  ↵|A| and
|ABA|  ↵2|A|. Then, |AB�1

BA
�1|  ↵6|A|.

Proof. In Theorem 2.1, take X = A and Y = Z = AB
�1. Then, we have that

|A||AB�1
BA

�1|  |AB�1
A
�1||ABA�1| = |ABA�1|2

since
�
AB

�1
A
�1

��1
= ABA

�1 and a set and its inverse have the same cardinality. In order to bound this,
take Theorem 2.1 again and consider X = A

�1, Y = AB and Z = A. This yields

|A||ABA�1|  |ABA||A�1
A
�1| = |ABA||AA|  ↵3|A|2

so, |ABA�1|  ↵3|A|. Substituting this above and dividing by |A| results in the statement.

We can use this to prove the following result.

Theorem 3.2. Let A be a finite set in a group. Assume that |AA|  ↵|A| and |AaA|  �|A|, for every
a 2 A. Then, |AAA|  ↵8�|A|.

Proof. We can use Theorem 2.3 setting A = C = B . The theorem states that there exists some set T ✓ A

such that |ATA|  ↵2|T |.
We can now use the trivial bound |TA|  |ATA|  ↵2|T | for the hypothesis of Lemma 2.2. Applying

this covering lemma, we have that there exists a set S ✓ A of size |S |  ↵2 such that A ✓ T
�1

TS . Hence,
we have that AAA ✓ AT

�1
TSA.

Consider Ruzsa’s triangle inequality in the form of Theorem 2.1, and substitute X = A, Y = AT
�1

T ,
and Z = A

�1
S
�1 to obtain |A||AAA|  |A||AT�1

TSA|  |AT�1
TA

�1||ASA|.
Now, we can use Lemma 3.1 to bound the first of these product sets. We can do this because we have

|AA|  ↵|A|, and |ATA|  ↵2|T |  ↵2|A| since T ✓ A, so we have all the hypothesis needed. To bound
the second one, consider

|ASA| =

�����
[

s2S
AsA

����� 
X

s2S
|AsA| 

X

s2S
�|A| = |S |�|A|  ↵2�|A|.

Putting everything together, we have that |A||AAA|  ↵6|A|↵2�|A| = ↵8�|A|2; and dividing by |A| gives
the desired result.

Now, we can use this theorem as a base case to inductively obtain bounds on the size of higher product
sets.

Proof of Theorem 1.6. The proof is done by induction on h. The base case h = 3 has been proved in
Theorem 3.2. Let us prove the general case. Assume that h > 3. Using Ruzsa’s triangle inequality with
X = A

�1, Y = AA and Z
�1 = A

h�2, we have

|Ah|  |AAA||A�1
A
h�2|

|A| .
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Taking now X = A, Y = A
�1 and Z

�1 = A
h�2 yields

|A�1
A
h�2|  |AA||Ah�1|

|A| .

Putting both equations together and using Theorem 3.2, we obtain |Ah|  ↵9�|Ah�1|, and the last term
is bounded by the induction hypothesis.

In the particular case when � = ↵, this result gives us c = 10 in the statement of Tao’s Corollary 1.4.
This constant is worse that the one obtained in Petridis [4] by one unit. However, it can be obtained
without using Petridis’s new method, so it is interesting by itself. Observe that Plünnecke’s graph-theoretic
method is necessary in order to obtain this bound, as it is needed to prove Theorem 2.3.

4. Further results

We can use Theorem 1.6 in order to get new product estimates. One may consider more sets and impose
further restrictions on them. For example, we may consider the iterated product of two sets A and B with
restrictions over the product sets of A, the product sets of A and B , and the size of each other. With this,
we can obtain a bound for iterated product sets of two sets. As we have already observed that Theorem 1.5
gives a better bound on product sets than Theorem 1.6, we will use Petridis’s result in this section in order
to obtain tighter bounds.

We start with a result giving a bound for the size of the product set of A and an iterated product
of B ’s. From this point onwards, Ruzsa’s triangle inequality (i.e., Theorem 2.1) will be used repeatedly
without warning, with X always being a simple set A or B , or one of their inverses.

Theorem 4.1. Let A and B be two finite non-empty sets in a group. Assume that |AA|  ↵|A|, |AaA| 
�|A| for every a 2 A, |AB |  �|A|, |AbB |  "|A| for every b 2 B, and |A|  �|B |. Then, for any k � 2,

|ABk | 
⇢

↵16(k�1) �2(k�1) �k�2 �2k�3 "k�1|A| if k is even,

↵16(k�1) �2(k�1) �k�1 �2k�1 "k�1|A| if k is odd.

Proof. The proof is done by induction on k . We need two base cases in order to complete the induction.

When k = 2 we can apply Ruzsa’s covering lemma due to the third condition on the sets. This gives
us a set S ✓ B such that |S |  b�c and B ✓ A

�1
AS . Hence,

|ABB |  |AA�1
ASB |  |AA�1

AA
�1||ASB|

|A| .

The second term in this expression can be bounded as

|ASB | =

�����
[

s2S
AsB

����� 
X

s2S
|AsB | 

X

s2S
"|A| = |S |"|A|  �"|A|. (1)

In order to bound the first one, use Theorem 1.5 to obtain

|AA�1
AA

�1|  |AAA�1|2

|A|  (|AA||AAA|)2

|A|3  ↵16�2|A|. (2)
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Putting the two expressions together we have

|ABB |  ↵16�2�"|A|. (3)

For k = 3, we use again the covering lemma with the same conditions as above and get

|ABBB |  |AA�1
ASBB |  |AA�1

AA
�1||ASBB |
|A| ,

as B ✓ A
�1

AS for some S ✓ B with |S |  �. The first term is bounded by (2). In order to bound the
second term, consider that

|A||ASBB |  |ASBA�1||AB |  �|ASBA�1||A|,

|B ||ASBA�1|  |ASB ||B�1
BA

�1|  �"|B�1
BA

�1||A|,
|A||B�1

BA
�1|  |B�1

A
�1||ABA�1|  �|ABA�1||A|

and
|B ||ABA�1|  |ABB ||B�1

A
�1|  �|A|↵16�2�"|A|,

where the last inequalities in each line come from (1) in the second line, (3) in the fourth, and the statement
hypothesis in all the others. With this,

|ASBA�1|  �"
|A|
|B |��

|A|
|B |↵

16�2�"|A|  ↵16�2�2�4"2|A| (4)

and |ABBB |  ↵16�2�↵16�2�2�4"2|A| = ↵32�4�2�5"2|A|.
For the general case, we can use the covering lemma in the same way. We have that

|ABk |  |AA�1
ASB

k�1|  |AA�1
AA

�1||ASBk�1|
|A| .

The first term is, again, bounded by (2), and the second is bounded as |A||ASBk�1|  |ASBA�1||ABk�2|.
The first term is now bounded by (4), and the second one is bounded by the induction hypothesis. Putting
everything together the result follows.

Using the previous result, we can give a general bound for iterated products of A’s and B ’s, as long as
all the A’s come before the B ’s.

Theorem 4.2. Let A and B be two finite non-empty sets in a group, with the conditions from Theorem 4.1.

Then, for any l � 2 and k � 2,

|Al
B

k | 
⇢

↵8l+16k�24 �2l+2k�3 �k�2 �2k�3 "k�1|A| if k is even,

↵8l+16k�24 �2l+2k�3 �k�1 �2k�1 "k�1|A| if k is odd.

Proof. As before, we can use Ruzsa’s triangle inequality (twice) to bound

|Al
B

k |  |Al+1||ABk ||AA|
|A|2 .

The three terms can now be bounded using Theorem 1.5, Theorem 4.1 and the statement hypotheses,
respectively, and this immediately yields the result.
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In order to complete all the bounds of product sets of three or more sets as those we have presented
so far, the only remaining case is that when l � 2 and k = 1.

Theorem 4.3. Let A and B be two finite non-empty sets in a group, with the conditions from Theorem 4.1.

Then, for any l � 2, |Al
B |  ↵8(l�1)�l�1�|A|.

Proof. We start by proving the base case l = 2. Using Ruzsa’s triangle inequality we have

|AAB |  |AAA�1||AB |
|A|

and

|AAA�1|  |AAA||AA|
|A|

so, using Theorem 1.5 and putting everything together, we get |AAB |  ↵7�↵�|A|.
For the general case (l > 2), observe that

|Al
B |  |AAA�1||Al�1

B |
|A| .

The first term can be bounded using Theorem 2.1 and Theorem 1.5 as |AAA�1|  ↵8�|A|, as before, and
the second is bounded by the induction hypothesis.

An easy corollary is obtained when taking B = A
�1 in Theorem 4.2. This would correspond to an

extension of the Plünnecke–Ruzsa inequality to the non-commutative case, when A = B .

Corollary 4.4. Let A be a non-empty finite set in a group such that |AA|  ↵|A| and |AaA|  �|A|, for
every a 2 A. For any k , l � 2, let m = min{k , l} and n = max{k , l}. Then,

|Al
A
�k |  ↵8n+21m�27 �2n+3m�4|A|.

Proof. Take B = A
�1. For this particular choice of sets we have � = 1 and, in virtue of Ruzsa’s triangle

inequality, |AA�1|  ↵2|A| and |AaA�1|  ↵�|A|. Substituting these into Theorem 4.2, we can write

|Al
A
�k | 

⇢
↵8l+21k�31 �2l+3k�4|A| if k is even,
↵8l+21k�27 �2l+3k�4|A| if k is odd.

First, observe that this can be written in such a way that it does not depend on the parity by taking the
worst exponent for each of the coe�cients. Since these coe�cients are all lower-bounded by 1 for this
choice of sets, this means we must take the highest exponents, which correspond to the odd case. Then,
for any k , l � 2 we may write

|Al
A
�k |  ↵8l+21k�27 �2l+3k�4|A|.

Observe now that this is a symmetric result. That is, the fact that a set and its inverse have the same
size means that |Al

A
�k | = |Ak

A
�l |. Then, as the bound given by the above expression is much weaker

when k > l , if this occurs one can use the bound for the size of the inverse set to obtain a better bound.
This is what allows us to take the minimum and the maximum of k and l .
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We can use this to obtain a particular bound for Tao’s Theorem 1.3 if we impose ↵ = �. In this case,
we have |Al

A
�k |  ↵10l+24k�31|A|.

If we want to obtain a constant c with respect to h = l+k , as appears in the statement of Theorem 1.3,
we have to consider the following. The exponent 10l + 24k � 31, for a fixed h, is increasing with k and
maximized when l = k because of the possibility to take the maximum and minimum of k and l . Hence,

10l + 24k � 31  10
h

2
+ 24

h

2
� 31  34

h

2
= 17h

so, we have c = 17 for all these di↵erent cases.

However, we can obtain a much better constant, in a more general setting, if we work with the sets A
and A

�1 from the beginning.

Proof of Theorem 1.7. We start with the base case h = 3. We must consider all the possible signs that
can appear in the exponents. By using Theorem 1.5, we have that

|AAA|  ↵7�|A|,

|AAA�1|  |AAA||AA|
|A|  ↵8�|A|,

|A�1
AA|  |AA||AAA|

|A|  ↵8�|A|,

and

|AA�1
A|  |AA�1

A
�1||AA|

|A|  ↵9�|A|.

The other four possible configurations are the inverses of these ones. Hence, in general,

|A✏1A
✏2A

✏3 |  ↵9�|A|.

For the general case, there are two di↵erent possibilities. First, assume ✏1 = ✏2. Then, take X = A
�✏1

in the statement of Ruzsa’s triangle inequality to obtain

|A||A✏1A
✏1A

✏3 · · ·A✏h |  |A✏1A
✏1A

✏1 ||A�✏1A
✏3 · · ·A✏h |  ↵7�|A�✏1A

✏3 · · ·A✏h ||A|.

If, on the contrary, ✏1 = �✏2, we have

|A||A✏1A
✏2A

✏3 · · ·A✏h |  |A✏1A
✏1 ||A✏2A

✏2A
✏3 · · ·A✏h |

 ↵|A✏2A
✏2A

✏2 ||A�✏2A
✏3 · · ·A✏h |

 ↵8�|A�✏2A
✏3 · · ·A✏h ||A|.

The worst exponent is given in the second case. The two last sets can be bounded by the induction
hypothesis.

Taking ↵ = � in the statement of Theorem 1.7, we obtain |A✏1A✏2 · · ·A✏h |  ↵9h�17|A|, for any signs
✏1, ... , ✏h 2{� 1, 1}. With this, we have an explicit constant value for the statement of Tao’s Theorem 1.3,
c  9, so we have that the same constant working when all signs are set to be equal serves in the rest of
cases as well.
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